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Abstract This study examines the seasonal distributions of simultaneous stratospheric concentric gravity
waves (GWs) observed by the Atmospheric Infrared Sounders and concentric traveling ionospheric
disturbances (TIDs) detected by the ground‐based Global Navigation Satellite System Total Electron Content
observations over the U.S. in 2022, to illustrate the mesoscale vertical coupling between the lower atmosphere
and the ionosphere. We compared epicenters of GWs and TIDs in the stratosphere and ionosphere with
tropospheric weather conditions and background winds in the thermosphere. Epicenters of concentric TIDs
associated with stratospheric concentric GWs correspond to areas with high convective available potential
energy over the central to eastern U.S. (∼60–110°W) in summer and over the southern U.S. (south of ∼40°N) in
spring and fall. Conversely, in fall to spring, epicenters over the northern U.S. (north of ∼40°N) appeared south
of regions with high extratropical cyclone activity. These findings suggest that convection was a primary source
of concentric GWs driving TIDs over the continental U.S. during all four seasons, although the specific weather
phenomena associated with the convection varied by season. Convection over the central to eastern U.S. in
summer and the southern U.S. in spring could be linked to thunderstorms. In contrast, convection over the
northern U.S. from fall through spring was likely linked to extratropical cyclones. We also found that concentric
TIDs were linked to 66% of the stratospheric concentric GW events (195 events in total), underscoring the
significant role of convection as a source of TIDs in the lower atmosphere and its contribution to the vertical
coupling.

1. Introduction
Traveling ionospheric disturbances (TIDs) are plasma density fluctuations in the ionosphere (Hines, 1964;
Hunsucker, 1982; Hocke & Schlegel, 1996; Y. Otsuka, 2021). There are two types of TIDs defined by their
generation mechanisms. One type is caused by gravity waves (GWs), which are a neutral atmosphere wave
generally generated in the lower atmosphere and propagate into the upper atmosphere, transporting their mo-
mentum and energy (Hines, 1960). When GWs reach the thermosphere, they induce neutral‐ion collision in the
ionosphere, driving TIDs (Hines, 1960; Kotake et al., 2007; Nicolls et al., 2014; Oliver et al., 1997; Tsugawa
et al., 2004; Vadas & Liu, 2009). GW‐type TIDs can propagate omnidirectionally during both daytime and
nighttime, although they prefer to propagate opposite to the background wind direction (Cowling et al., 1971;
Crowley et al., 1987; Crowley & Rodrigues, 2012). The other mechanism involves perturbations of polarization
electric fields induced by Perkins instability (Kelley & Miller, 1997; Miller et al., 1997; Otsuka et al., 2007;
Perkins, 1973; Saito et al., 1998; Shiokawa et al., 2003). Perkins instability‐type TIDs propagate only westward,
with plane wavefronts, and equatorward along geomagnetic field lines during nighttime in both hemispheres and
primarily occur during solstices and solar minimum conditions. These differences enable us to distinguish be-
tween GW‐type and Perkins instability‐type TIDs.

Several studies have shown that potential sources of GWs driving TIDs include earthquakes, volcanic eruptions,
tropical cyclones, tsunamis, thunderstorms, jets/fronts, and secondary/tertiary GW generation in the middle at-
mosphere (Azeem et al., 2017; Chou et al., 2016; Heale, Bossert, & Vadas, 2022; Heale, Inchin, & Snively, 2022;
Hung & Kuo, 1978; Kogure et al., 2024; Liu et al., 2011; Miyoshi et al., 2018; Nishioka et al., 2013; Takahashi
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et al., 2022; Taylor & Hapgood, 1988; Vadas & Azeem, 2021; Vadas & Crowley, 2010; Vadas & Liu, 2009, 2013;
Vadas et al., 2023; Wright et al., 2022; Yang et al., 2022). Other potential sources of GWs driving TIDs include
heating related to auroral processes during geomagnetic storms in the thermosphere (Chimonas & Hines, 1969;
Ding et al., 2007; Hocke & Schlegel, 1996) and impacts of rocket launches (Afraimovich et al., 2002;
Arendt, 1971; Bowling et al., 2013; Calais & Minster, 1996; Chou et al., 2018; Ding et al., 2014; Kakinami
et al., 2013; Li et al., 1994; Lin, Chen, et al., 2017; Lin et al., 2014; Noble, 1990). GWs generated by joule heating
and auroral particle precipitation tend to induce LSTIDs (large‐scale TIDs) propagating equatorward from auroral
zones in both hemispheres (Richmond, 1978).

Convection (e.g., related to tropical cyclones and thunderstorms) is one of the primary sources of GWs. There are
three GW generation mechanisms within convection: pure thermal forcing, a mechanical oscillator effect, and an
obstacle effect (Fritts & Alexander, 2003). The obstacle effect generates GWs propagating opposite to the
background wind relative to the convective obstacle (Clark et al., 1986; Pfister & Russell, 1993; Pfister
et al., 1993). On the other hand, thermal forcing and the mechanical oscillator effect generate concentric GWs
because of the localized point source (Piani et al., 2000). GWs/TIDs from convective sources through the thermal
forcing and mechanical oscillator effect mechanisms show concentric wave patterns, allowing us to distinguish
them from waves from other sources (spontaneous adjustments and flow over mountains). In addition, the
geographic location of the generation of concentric GWs can be relatively easily detected because their epicenters
correspond to the generation points. It should be noted that an apparent epicenter would deviate a few hundreds of
kilometers from its generation point if the background wind is strong (Kogure et al., 2020; Vadas et al., 2009).
Concentric GWs propagate into the thermosphere, with anisotropies occurring due to background wind filtering
effects, and then generate partially concentric TIDs in the ionosphere (Kim et al., 2009; Vadas, 2013; Vadas &
Fritts, 2004). Concentric GWs are also generated by the secondary wave generation mechanism, that is, local
body force, which is one of the important GW sources in the thermosphere (Vadas, 2013; Vadas & Liu, 2009).

Previous papers have shown that high convective activities can simultaneously generate concentric GWs in the
stratosphere and concentric TIDs (Azeem et al., 2017; Chou et al., 2016; Srinivasu & Dashora, 2024). These
coincidences allow for the identification of potential GW and TID sources as the same convection cell in the
troposphere. However, no studies have shown the geographical distribution and seasonal variations of these
simultaneous events nor the correlation between the events and meteorological conditions. Due to the lack of such
studies, it is not well known what meteorological characteristics/parameters are strongly connected to the
occurrence of concentric TIDs driven by GWs propagating directly from the troposphere. TIDs affect the precise
processing of Global Navigation Satellite Systems (GNSS) (Hernández‐Pajares et al., 2006, 2007) and high‐
frequency communication systems (Bristow et al., 1994; Frissell et al., 2014; Samson et al., 1989). Thus, un-
derstanding the generation mechanism of TIDs is critically important for maintaining wireless communication
technologies.

This paper investigates the statistical distributions of simultaneous concentric GWs' and TIDs' epicenters over the
continental U.S. during the four seasons of 2022 (a solar medium year: F10.7 = 100–150 sfu). Section 2 in-
troduces the observation techniques: two satellites (Atmospheric Infrared Sounders (AIRS) and Aeronomy of Ice
in the Mesosphere (AIM)) observing stratospheric GWs and Global Navigation Satellite System Total Electron
Content (GNSS‐TEC) observing TIDs. The continental U.S. has extensive TEC coverage with more than 6,000
GNSS receivers, which is advantageous for capturing concentric TID structures in GNSS‐TEC data. Section 3
describes an analysis used to classify concentric GW and concentric TID events. Section 4 shows the distribution
and local time variation of epicenters of stratospheric concentric GWs and concentric TIDs. Section 5 presents the
weather conditions over the continental U.S. in 2022, discussing the potential sources of concentric TIDs
associated with stratospheric GWs. Section 6 compares the distribution and local time variation of background
winds to those of the epicenters. Section 7 concludes this paper.

2. Observations of Concentric GWs and Concentric TIDs
2.1. Concept of Atmospheric Vertical Coupling and Corresponding Observations

Figure 1 shows a schematic of mesoscale wave vertical coupling between the lower atmosphere and ionosphere
and the corresponding observations presented in this paper. Convection generates concentric GWs in the
troposphere that propagate into the stratosphere, where anisotropies of GWs occur due to the strong stratospheric
jet. These stratospheric GWs are captured by both AIRS and Cloud Imaging and Particle Size Instrument (CIPS).
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When the upward propagating GWs reach the thermosphere/ionosphere, their frequencies are Doppler shifted due
to tidal winds and mean winds. GWs decrease in their frequencies and vertical wavelengths when their propa-
gation direction of GWs aligns with the background wind (tidal wind+mean wind), leading to wave breaking and
anisotropies in GWs. The GWs that survive from the stratosphere to the thermosphere/ionosphere can drive
partial concentric TIDs captured by the ground‐based GNSS‐TEC observations. In another vertical path,
convectively‐generated concentric GWs break due to strong wind, which generates concentric secondary GWs.
These secondary and higher‐order GWs also reach the thermosphere/ionosphere, generating concentric TIDs
(Azeem & Barlage, 2018; Vadas & Azeem, 2021; Vadas & Crowley, 2010).

2.2. Atmospheric Infrared Sounder (AIRS) and Cloud Imaging and Particle Size Instrument (CIPS)

AIRS is an instrument aboard the NASA Aqua satellite launched on 4 May 2002 (Aumann & Pagano, 2003;
Chahine et al., 2006). Aqua has a sun‐synchronous orbit at an altitude of ∼705 km, orbiting the Earth every
98.8 min and crossing the equator going north at ∼1:35 p.m. LT and going south at ∼1:35 a.m. LT. AIRS
measures infrared radiance spectra in three spectral bands between 3.74 and 15.4 μm. AIRS uses cross‐track
scanning, with each scan consisting of 90 footprints over 1,780 km of ground distance and an along‐track dis-
tance of 18 km. The footprint size ranges from 14 × 14 km2 at the nadir to 21 × 42 km2 at the edges of the scan.
We analyzed dedicated AIRS 15μm brightness temperature data sets provided by the Jülich Supercomputing
Center, Germany (Hoffman, 2021. https://datapub.fz‐juelich.de/slcs/airs/gravity_waves/), to investigate
concentric GWs over the continental U.S. in the stratosphere. The method to derive GW perturbations is as
follows. First, the brightness temperatures observed in two AIRS channels were averaged using kernel functions
peaking topmost at 40–45 km of altitude and full widths at half maximum of ∼15 km to reduce measurement
noise. Second, the background temperatures, calculated by a fourth‐order polynomial fit, were subtracted for each
across‐track scan. The remaining brightness perturbations provide a measure of GWs with vertical wavelengths
longer than ∼15 km and horizontal wavelengths between ∼50 and 500 km. The AIRS observations and retrieval
of GWs are described in more detail by Hoffmann et al. (2013, 2014, 2017).

We also analyzed Rayleigh scattering albedo anomaly (RAA) from CIPS on the NASA Aeronomy of Ice in the
Mesosphere (AIM) satellite (McClintock et al., 2009; Rusch et al., 2017). CIPS is one of three instruments on the
NASA AIM satellite, which was launched in 2007 into a near‐polar, sun‐synchronous orbit at an altitude of

Figure 1. A schematic of mesoscale atmospheric wave vertical coupling and its observation.
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∼600 km (McClintock et al., 2009; Russell III et al., 2009). CIPS is a four‐camera, nadir‐viewing panoramic
imager that measures 265‐nm radiation scattered by the neutral atmosphere as well as by polar mesospheric
clouds (PMCs) with 7.5 × 7.5 km2 horizontal resolution, which is a few times higher than that of AIRS. Since the
GNSS‐TEC coverage area in this study is from ∼25° to 50°N, PMC scattering can be neglected. The source
function of the 265‐nm radiation observed by CIPS peaks at an altitude of 50–55 km (Bailey et al., 2009),∼10 km
higher than the most sensitive altitude of AIRS (40–45 km). We used the CIPS Rayleigh Albedo Anomaly data
product provided by the University of Colorado Laboratory for Atmospheric and Space Physics (https://lasp.
colorado.edu/aim/download). The background Rayleigh albedo, which is the albedo that would be observed in
the absence of small‐scale atmospheric perturbations such as GWs, is calculated using a numerical generalization
of the “C‐σ” model described in Carstens et al. (2013). The RAA, which at the scales of interest here is interpreted
as being due to GWs, is then calculated by subtracting the background albedo from the observed Rayleigh albedo
(Randall et al., 2017). The methodology and retrieval of the RAA are described in Carstens et al. (2013) and
Randall et al. (2017).

CIPS captures GWs with horizontal wavelengths ranging from ∼15 to 600 km and vertical wavelengths longer
than ∼15 km, similar to AIRS. However, CIPS has a cross‐track coverage of ground distance (∼1,000 km) that is
half of that of AIRS, sometimes preventing us from detecting concentric GWs and determining their epicenters.
Also, CIPS can observe GWs once‐a‐day (sunlit only). The observable local time is generally at ∼12 LT in 2022,
although the local time has changed over the course of the mission. Because of its narrow coverage and its low
sampling frequency, the number of concentric GW events in CIPS is generally 2–5 times lower than in AIRS.
Regardless of its narrow coverage, Xu et al. (2024) reported that temporal and geographical variations of GWs in
CIPS are consistent with those in AIRS. Although this paper does not discuss the results of CIPS, they are shown
in Figures S3–S5 in Supporting Information S1. In general, they are similar to the distributions of concentric GWs
observed by AIRS, which strengthens the robustness of our results.

2.3. Global Navigation Satellite System Total Electron Content (GNSS‐TEC)

The GNSS‐TEC data are obtained from many ground‐based GNSS receivers worldwide, and this study used data
from the continental U.S (Figure 2). The continental U.S. has dense coverage with more than 6,000 receivers
covering ∼60–130°W, ∼25–60°N. In particular, the dense GNSS‐TEC data are available in the areas of 70–
130°W, 30–50°N. We applied an elevation mask of 15°, smoothed TEC data from each receiver over 15 min, and
subtracted the smoothed TECs from the unsmoothed TECs. Because the 15‐min running window has a full width
at half maximum of ∼25 min, the detrended TEC data retain Fourier components with periods shorter than
∼25 min, excluding LSTIDs induced by auroral joule heat. Then, all the detrended TEC data were binned into
0.25° × 0.25 ° × 30‐s grid boxes to construct the GNSS‐TEC maps. The remaining detrended TEC signals are
defined as TIDs, whose spectral ranges are ground‐based periods of 1–25 min and horizontal wavelengths more

Figure 2. Map of Global Navigation Satellite Systems receivers on 1 January 2022.
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than the Nyquist number (0.5°, i.e.,∼60 km). We estimate the minimum observable TID vertical wavelength to be
of the order of ∼100 km because GNSS receivers can only observe vertically integrated total electron content (up
to several thousands of km). Considering the limitation of the period‐band and horizontal resolution, the mini-
mum ground‐based phase speed is ∼40 ms− 1 (=0.5°/∼25 min). Given the wide coverage and high temporal and
spatial resolution provided by these data, this type of statistical study can only be carried out over the continental
U.S. so far.

3. Analysis
We classified concentric GW and concentric TID events during 2022 into three categories: (a) concentric TIDs in
GNSS‐TEC associated with concentric GWs captured by AIRS (AIM) simultaneously, (b) concentric GWs only
observed in AIRS (AIM), and (c) concentric TIDs only observed in GNSS‐TEC. The concentric GWs, concentric
TIDs, and their apparent epicenters were estimated through visual inspection. Estimated locations of epicenters
typically vary by less than 1–2° among investigators. There are several techniques (beam‐forming, raytracing, and
circle method) that are commonly used by seismologists to locate the epicenters of earthquakes and can also be
applied to identify the epicenters of TIDs (Liu et al., 2011). However, these methods require assumptions about
generation altitude, non‐background wind conditions, and constant group velocity, which sometimes lead to
errors. This study analyzed 84 days in spring, 92 days in summer, 91 days in fall, and 87 days in winter in daytime
(354 days in total). For nighttime, the numbers of days analyzed are the same as nighttime, except in spring
(85 days); that is, the total number is 355 days. The simultaneous case, category (a), is defined as GNSS‐TEC
capturing concentric TIDs within ±3‐hr of the time when AIRS (CIPS) captured concentric GWs, with the
horizontal distance less than ∼5° between both apparent epicenters. Due to vertical propagation lags and different
observable GW spectra, AIRS (CIPS) and GNSS‐TEC might not capture the exact same wave packet, but both
wave sources are most likely the same (Yue et al., 2013, 2014).

Figure 3 shows examples of the three categories. The top panels (a, b) show a simultaneous event in AIRS and
GNSS‐TEC, the middle panels (c, d) show a concentric GW‐only event in AIRS, and the bottom panels (e, f) show
a concentric TID‐only event in GNSS‐TEC. Partial concentric GWs and TIDs are clearly visible within the black
rectangle in Figures 3a and 3b, with epicenters for the GWs and TIDs located at ∼87°W, ∼37°N, and ∼87°W,
∼35°N, respectively. On the other hand, partial concentric GWs with an epicenter at ∼102°W, ∼47°N were
present over the central U.S. in Figure 3c, while there were no TIDs similar to those GWs, although some TIDs
propagated northward from the south in Figure 3d. In contrast, concentric TIDs in Figure 3f were visible over the
West Coast, with their epicenter at ∼113°W, ∼28°N, but there were no GWs in Figure 3e. As a result, the ev-
idence of vertical coupling for the TID‐only event is not established. This paper focuses primarily on simulta-
neous GW and TID events (category 1) and GW‐only events (category 2), as AIRS may have missed capturing
some GWs due to its sparse sampling and limited observable GW spectra, which introduces significant ambiguity
in identifying their potential sources. Examples of the three categories for CIPS are shown in Figure S1 in
Supporting Information S1.

Although we can distinguish concentric TIDs from other TIDs, large‐amplitude TIDs may obscure concentric
TIDs. In particular, TIDs driven by Joule heating tend to have large amplitude during high‐active geomagnetic
storms. Geomagnetic high‐activity events (with a 3‐hourly Kp index of 4–7) are included when we can identify
the epicenters of concentric TIDs superimposed with TIDs driven by Joule heating. However, large‐amplitude
TIDs driven by Joule heating may obscure concentric TIDs, potentially affecting the observed seasonal varia-
tion. To assess the frequency of TIDs driven by Joule heating each season, we analyze occurrence rates of a Kp
index higher than 4. The occurrence rates were 9% in winter, 6% in spring, 8% in summer, and 9% in fall. Since the
variation in each season is quite small, the obscuration effect does not impact the discussion in Chapters 5 and 6.

It should be noted that concentric TIDs caused by rocket launches on the West and East coasts were excluded.
The locations include Cape Canaveral Space Force Station (80°W, 28°N), John F. Kennedy Space Center (80°W,
28°N), Vandenberg Space Force Base (121°W, 35°N), Mid‐Atlantic Regional Spaceport (75°W, 38°N), Wallops
Flight Facility (75°W, 38°N), White Sands Missile Range (106°W, 32°N), White Sands Missile Range (106°W,
32°N), Corn Ranch (105°W, 31°N), Spaceport America (107°W, 32°N). The list of rocket launches was obtained
from https://en.m.wikipedia.org/wiki/List_of_spaceflight_launches_in_January%E2%80%93June_2022 and
https://en.m.wikipedia.org/wiki/List_of_spaceflight_launches_in_July%E2%80%93December_2022.
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Figure 3. Examples of the simultaneous event in Atmospheric Infrared Sounders (AIRS) and Global Navigation Satellite System Total Electron Content (GNSS‐TEC)
(a, b) on 17 June 2022, the concentric GW‐only event in AIRS (c, d) on 10 July 2022, and the concentric TID‐only event in GNSS‐TEC on 28 September 2022 (e, f). The
red rectangles indicate concentric gravity waves (GWs)/concentric traveling ionospheric disturbances (TIDs). The stars indicate the epicenters of concentric GWs/
concentric TIDs.
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4. Result: Distribution of Epicenters of Concentric GWs and Concentric TIDs
Figure 4 shows the distributions of the epicenters for the simultaneous GW and TID cases (a–d) and the GW‐only
cases in AIRS (e–h) across the four seasons. As there was frequently a distance of a few degrees between the
epicenters of GWs and TIDs, the location of the GWs' epicenter was chosen to represent the epicenter of TIDs
because the stratosphere is closer to the GW sources in the troposphere. The orange and black circles represent
epicenters during daytime and nighttime, respectively. Table 1 shows the occurrence numbers and rate for the
simultaneous and GW‐only cases in each season during daytime and nighttime. TID‐only in GNSS‐TEC cases
and the three types in AIM are shown in Figures S3–S5 in Supporting Information S1. It should be noted that the
occurrence number and rate of TID‐only cases (287 cases in total, including daytime and nighttime, corre-
sponding to a 40% occurrence rate) were approximately twice as high as those of simultaneous cases. However,
this higher occurrence rate might result from the narrower temporal and geographical coverage of AIRS
compared to the ground‐based GNSS‐TEC observations. The number and rate of simultaneous cases in Table 1
were highest in summer (69 cases in total and 38% on average) and clustered over the central U.S. and the Gulf of
Mexico (∼80–100°W, 25–50°N) in Figure 4c. This cluster can be seen in spring, although the occurrence number
and rate were smaller than in summer (20 cases in total and 12% on average). This result is consistent with
Hoffmann and Alexander (2010), who reported that the Great Plains (∼30–45°N, 80–100°W) is a hot spot of
stratospheric GWs generated by thunderstorms. On the other hand, the simultaneous cases in winter (26 cases in
total and 15% on average) were clustered between 40 and 50°N and did not appear south of 35°N. In fall, the
occurrence number was the smallest (13 cases in total and 7% on average), and the epicenters appeared over∼28–
52°N, 65–82°W and ∼32–48°N, 102–115°W. This seasonal variation cannot be attributed to contamination from
Joule heating‐driven TIDs, which obscures concentric TIDs, because the occurrence rate of high Kp index events
was comparable each season. These geographical and seasonal variations seem to be attributed to the source
activity of GWs driving the TIDs, which will be discussed in Section 5.

Although the occurrence of the GW‐only cases is generally smaller than that of the simultaneous GWs and TIDs
cases, except in fall, the geographical distributions are similar. The similar geographical distributions can be
found in TID‐only cases as well, although TID‐only events can be seen frequently over the Pacific Ocean, where
GW‐only and simultaneous events did not appear (See Figure S2 in Supporting Information S1). The epicenters in
summer and fall were clustered in the low latitudes, while those from fall to spring were clustered in high lati-
tudes. These similarities suggest that the primary sources of the GW‐only cases were the same as those of the
simultaneous cases, with GWs potentially being filtered out by background winds above an altitude of ∼40 km.
Another possible mechanism for non‐concentric TIDs in GNSS‐TEC is that reduced electron density during
nighttime, compared to daytime, weakens the amplitudes of TIDs, obscuring concentric TIDs. Additionally,
contamination from Perkins instability‐type TIDs could obscure GW‐type TIDs during nighttime. Indeed, the
total number and ratio of GW‐only events during nighttime (44 events and 12%) is larger than that during daytime
(23 events and 6%), although it is vice versa for simultaneous events. However, there are also differences between
GW‐only and simultaneous cases. For example, the clustered epicenters in the low latitudes in spring, which
appear in Figure 4b, are not visible in Figure 4f. Although we will compare the distribution of the epicenters with
the background wind in Section 6, background wind filtering cannot account for the difference between GW‐only
and simultaneous ceases. This difference might be attributed to variations in the GW source spectra; however,
addressing this is beyond the scope of our paper.

Regarding local time variation, the epicenters of simultaneous cases in winter and fall (Figures 4a and 4d) during
daytime (orange double circle) were present at ≥∼42°N, while those during nighttime (black double circle) were
present at ≤∼42°N. This geographical pattern is not observed in Figures 4e and 4h. The total occurrence numbers
across all seasons also have a clear local time variation. Specifically, the number of simultaneous cases during
daytime was 1.5 times larger than that during nighttime (Table 1). In contrast, the number of GW‐only cases
during daytime was two times less than that during nighttime. This trend is consistent across all seasons except for
fall. The trend of simultaneous and GW‐only events might be attributed to a local time variation of stratospheric
GW activities. Hoffmann and Alexander (2010) analyzed the AIRS 4 μm data set over the continental U.S. during
a thunderstorm season (May to August) and found that stratospheric GW activity was higher in nighttime than in
daytime. Indeed, in fall, the total occurrence of concentric GWs in the stratosphere (simultaneous + GW‐only
events) was higher during nighttime (20 events) than during daytime (15 events). However, in the other seasons,
the total occurrence was either the same or lower during nighttime than during daytime. This result differs from
Hoffmann and Alexander (2010), but this discrepancy might be attributed to a different sensibility to GW spectra
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between the 4 and 15 μm data. Thus, the general local time variation is possibly attributed to the occurrence of
concentric TIDs rather than GW source activity. These local time variations could be explained by the local time
variation in the thermospheric wind direction, which will be discussed in Section 6.

Figure 4. Distributions of simultaneous concentric GWs and concentric TIDs in winter (a), spring (b), summer (c), and fall (d). (e–h) Are the same as (a–d), respectively,
but for the GW‐only case. The orange and black double circles indicate epicenters of concentric GWs and concentric TIDs during daytime and nighttime, respectively.
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Finally, concentric TIDs appear in 66% of the total stratospheric GW events (the number of simultaneous + only‐
GW cases). In particular, the TID occurrence rate reaches 77% during daytime, although the rate is ∼30% in fall.
This result suggests that more than half of the concentric GWs in the stratosphere propagate directly to the
thermosphere/ionosphere or breaking of the convectively‐generated concentric GWs induces secondary GWs
with concentric fronts, driving the concentric TIDs, above the stratopause (Heale, Inchin, & Snively, 2022).

5. Potential Meteorology Sources of Concentric GWs and Concentric TIDs
As far as we know, the main sources of concentric GWs and concentric TIDs are Tsunami associated with
earthquakes, convection, and the breaking of GWs, that is, secondary generation (Galvan et al., 2012; Heale,
Bossert, & Vadas, 2022; Heale, Inchin, & Snively, 2022; Heale et al., 2014; Hickey et al., 2009; Kogure
et al., 2020; Liu et al., 2014; Vadas & Azeem, 2021; Vadas & Fritts, 2004, 2005, 2006; Vadas & Liu, 2009).
Because there was no epicenter of significant tsunami around the continental U.S. in 2022 (https://www.ncei.
noaa.gov/products/natural‐hazards/tsunamis‐earthquakes‐volcanoes/tsunamis/recent‐significant‐events), a
tsunami can be excluded as a potential source. The GWs captured by AIRS are primarily generated by convection
rather than the secondary generation mechanism, then propagate directly into the thermosphere/ionosphere or
break above the stratopause, producing secondary/tertiary GWs with concentric fronts. Becker and Vadas (2018)
and Vadas and Becker (2019) show that secondary GWs with large amplitudes are often generated above the
stratosphere, which is higher than the AIRS observation height (∼40 km). Also, secondary/tertiary GW have
smaller amplitudes when their primary GWs break at lower altitudes (Becker et al., 2022; Vadas & Becker, 2019).
Thus, convection is likely the primary source of stratospheric GWs and the GWs driving concentric TIDs.

We used the 8 μm brightness temperature observed by the AIRS data set to examine the correlation between deep
convection and concentric TIDs associated with stratospheric GWs in accordance with Hoffmann and Alex-
ander (2010). We define a brightness temperature of less than 220 K as a signal of deep convection clouds,
following Hoffmann and Alexander (2010), and collect such events on a 1 ° × 1° longitude‐latitude grid.
Figure 5 shows a geographical distribution of the occurrence numbers of deep convection in each season,
superimposed with the epicenters of simultaneous concentric GWs and concentric TIDs. Most epicenters are
located within ∼2–3° distance of deep convection, though some (four events in ∼20–23°N, ∼86–92°W in spring,
and two events in∼33–34°N,∼102–106°W) are as far as∼5° away. Specifically, the clustered epicenters over the
central U.S. (∼80–100°W, 25–50°N) obviously correspond to the deep convection during spring and summer,
which is consistent with Hoffmann and Alexander (2010). Deep convection occurred between 30 and 50°N aligns
with the clustered epicenters, suggesting it is the most likely source of GWs driving concentric TIDs over the
continental U.S. throughout all seasons.

Table 1
Occurrence Numbers of the Simultaneous Cases and GW‐Only Cases During Daytime and Nighttime for Each Season

Season Local time GWs and TIDs GWs (GWs and TIDs)/(GWs and TIDs + GWs) [%]

Winter daytime 18 (21%) 11 (13%) 62

nighttime 8 (9%) 13 (15%) 38

Spring daytime 11 (13%) 0 (0%) 100

nighttime 9 (11%) 2 (2%) 82

Summer daytime 42 (46%) 2 (2%) 95

nighttime 27 (29%) 17 (18%) 61

Fall daytime 5 (5%) 10 (11%) 33

nighttime 8 (9%) 12 (6%) 40

Total daytime 76 (21%) 23 (6%) 77

nighttime 52 (15%) 44 (12%) 54

day + nighttime 128 (18%) 67 (9%) 66

Note. The numbers in parentheses indicate occurrence rates (the occurrence numbers divided by the number of available
dates).
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To further investigate metrological phenomena associated with deep convection, we analyze the North American
Mesoscale Forecast System (NAM) analysis (Colbert et al., 2019). Convection typically occurs in regions with
high convective available potential energy (CAPE) (Holton & Hakim, 2013) or within extratropical cyclones
(Evans, 2010; Uccelini, 1990; Wernli et al., 2002).

Figure 6 shows the seasonal mean CAPE obtained from the NAM analysis (Colbert et al., 2019). CAPE is defined
as the maximum possible upward kinetic energy per unit mass that a buoyant parcel can obtain from the free
convection level to the neutral buoyancy level (Holton & Hakim, 2013). CAPE values, which indicate the po-
tential for strong convection, are generally high around the Gulf of California (∼108–115°W, 25–30°N), the Gulf
of Mexico (∼85–95°W, 25–30°N), and the North Atlantic Ocean (∼60–80°W, 25–40°N). The area with a sea-
sonal mean CAPE higher than 400 J kg− 1 area (white‐to‐red area in Figure 5) was largest in summer (Figure 6c),
corresponding to the cluster of the GW's and TID's epicenters (∼80–100°W, ∼25–45°N) in Figure 4c. Similarly,
the area around the Gulf of Mexico and the North Atlantic Ocean in spring corresponds to the region with a
seasonal mean CAPE higher than 400 J kg− 1, and the clustered epicenters can be seen there (Figure 4b), although
the CAPE values and the number of the epicenters were lower in spring than in summer. Changnon and
Changnon (2001) showed the climatological number of thunderstorm days and the high number in ∼80–100°W,
∼25–45°N, where the CAPE and the deep convection and concentric GWs' and TIDs' occurrence rates were high.
Hoffmann and Alexander (2010) also showed that this region is a hot spot of stratospheric GW associated with
deep convection in a thunderstorm season (May to August). Therefore, the potential source of the GWs driving the
concentric TIDs was convection within thunderstorms. In fall, four epicenters in Figure 4d appeared over the

Figure 5. Geographical distributions of the occurrence numbers of deep convection in winter (a), spring (b), summer (c), and
fall (d). The orange and black double circles are the same as in Figures 4a–4d.
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North Atlantic Ocean south of 40°N, where the CAPE values were high. Their potential source was also con-
vection. Given that the North Atlantic Ocean during fall is well known for tracks of tropical cyclones, that is,
Hurricanes (Landsea, 1993), some of the convection could be associated with Hurricanes rather than thunder-
storms. We compared the timing of the GW‐only and simultaneous events with Hurricanes in 2022 (https://www.
nhc.noaa.gov/data/tcr/index.php?season=2022&basin=atl). One GW‐only and two simultaneous events
occurred over Hurricane Nicole during 9–11 November.

However, the distribution of TID’s epicenters does not align with CAPE values over the continental U.S. in winter
and northern U.S. (north of∼35°N) in spring and fall. The epicenters were clustered in 35–50°N, and their activity
was higher in winter than those in spring and fall. These features are consistent with the characteristics of
extratropical cyclones, suggesting that their potential source is convection within extratropical cyclones. Large‐
scale vertical motions within extratropical cyclones are driven by horizontal temperature gradients, that is,
baroclinic force (subsection 9.2.3. in Holton & Hakim, 2013). The large‐scale motion in a warm and moist air side
is upward, inducing latent heating and enforcing small‐scale updraft, that is, convection. Because CAPE considers
only a vertical temperature profile and neglects the effects of water vapor and condensed water (subsection 9.5.1.
in Holton & Hakim, 2013), CAPE may not be a useful index of convective activity within extratropical cyclones.
Indeed, previous papers report that convection occurs under low CAPE but high wind shear conditions along cold
fronts in fall, winter, and spring (e.g., Burke & Schultz, 2004; Celiński‐Mysław & Matuszko, 2014; Celiński‐
Mysław et al., 2020; Sherburn & Parker, 2014). Since cold fronts appear south of extratropical cyclone's centers,
convection under low CAPE conditions occurs preferentially there. Instead of CAPE, we derived the 24‐hr
difference filtered variance of sea level pressure, called ECApp, from the NAM analysis to measure extra-
tropical cyclone activity and location (Ma & Chang, 2017). ECApp is described in Equation 1 in Ma and
Chang. (2017) as the follows:

Figure 6. (a) Convective available potential energy (CAPE) averaged in winter 2022 (January, February, and December). The
CAPE values were obtained from the North American Mesoscale Forecast System (NAM) analysis. (b–d) are the same as
(a) but for spring (March to May), summer (June to August), and fall (September to November), respectively. The orange and
black double circles are the same as in Figures 4a–4d.
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ECApp = (Ps(t+24h) − Ps(t))
2

(1)

Ps, t, and indicate sea level pressure, time, and seasonal average, respectively. ECApp values become larger

with proximity to the center of an extratropical cyclone. It should be noted that anticyclones are slow‐moving, and
their pressure anomalies are weaker than those of cyclones (Hoskins & Hodges, 2002), so extratropical cyclones
predominantly contribute to ECApp (Ma & Chang, 2017). Although ECApp is not a direct index of convection
but rather an index of extratropical cyclone activity, convective activity is linked to extratropical cyclone activity.
Figure 7 shows the seasonal mean ECApp across the four seasons. The ECApp values generally peak in winter,
consistent with the general seasonal variation of extratropical cyclone activity. Also, the geographical distribution
of ECApp is in good agreement with its climatology (see Figure 1b in Ma & Chang, 2017); that is, the values are
roughly higher in high latitudes than in low latitudes. It should be noted that a few white lines can be seen in the
North Atlantic Ocean in fall. These lines correspond to tracks of centers of Hurricanes, Earl and Fiona, not centers
of extratropical cyclones. However, any epicenter was not found over the North Atlantic Ocean when both
Hurricanes passed over there. Although the epicenters of the concentric TIDs north of ∼35°N were relatively
closer to ECApp values higher than 200 hPa2, the epicenters appeared in ∼2–15° south of the local maximum
ECApp. For example, the ECApp values peaked at 105–115°W, 50°N in winter (Figure 7a), while the epicenters
were clustered around 105–115°W, 35–48°N (Figure 4a). This southern preference is possibly natural because a
cold front, where convection preferentially occurs despite low CAPE values, appears south of an extratropical
cyclone's center. In addition, warm and moist air, where upward motion and convection occur, is located south of
the center of an extratropical cyclone in the sea level pressure, which corresponds to a high ECApp area. Upward
motion and convection are induced in warm and moist air, so epicenters of convectively‐generated GWs could
prefer to appear a few to several degrees south of an extratropical cyclone's center Figure 7.

Figure 7. ECApp derived from the NAM analysis in winter (a), spring (b), summer (c), and fall (d). The orange and black
double circles are the same as in Figure 4.
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To summarize the potential sources of GWs driving concentric TIDs, it is likely convection over the entire
continental U.S. and all seasons. However, weather phenomena associated with convection could vary by season
and latitude. The convection could be associated with thunderstorms over the central‐eastern U.S. in summer and
the southern U.S. in spring, while it could be associated with extratropical cyclones over the northern U.S. during
winter, spring, and fall. The convection over the North Atlantic Ocean in fall could be associated with hurricanes.

6. Background Wind Effect on Concentric GWs and Concentric TIDs
The simultaneous cases show local time variations, but the stratospheric GW occurrences (total of GW‐only plus
simultaneous events) do not exhibit such variations. This result suggests that local time variations in concentric
TIDs are caused by changes in the background wind above ∼40 km altitude. Another possible mechanism is the
higher background electron density during daytime compared to nighttime. Hooke (1968) demonstrated that the
amplitudes of TIDs driven by GWs are proportional to background electron density. It is well known that
background electron density is higher during daytime than during nighttime. Otherwise, Perkins instability‐type
TIDs obscure GW‐type TIDs during nighttime because the former TIDs generally have larger amplitudes than the
latter ones. Here, we focus on the background wind effect on the local time variation of TIDs.

Figure 8 shows vertical profiles of the seasonal mean zonal and meridional winds, averaged over 60–130°W at 25,
37, and 50°N at specific local times, obtained from the SD‐WACCM‐X model (Specified Dynamics Whole
Atmosphere Community Climate Model with thermosphere and ionosphere eXtension) (Liu et al., 2018; Sassi
et al., 2013). This SD‐WACCM‐X simulation below ∼50 km altitude is nudged with MERRA‐2 (The Modern‐
Era Retrospective Analysis for Research and Applications, Version 2) (Gelaro et al., 2017). The longitudinal,
latitudinal, and temporal resolutions of the output data are 1.25°, 0.9°, and 1 hr, respectively. The two local times
are chosen as the time closest to when AIRS passes through each longitude, that is, ∼1.5 LT (a–c, g–i) and ∼13.5
LT (d–f, j–l). As expected, local time variations in zonal and meridional winds above ∼120 km were quite
significant in all seasons and latitudes (up to ∼250 ms− 1 for the meridional wind at 50°N in summer), while
variations below∼120 km were smaller. The magnitudes of the zonal and meridional winds above∼120 km were
larger at nighttime (Figure 8a–8c, 8g–8i) than those during daytime (Figure 8d–8f, 8j–8l), especially in summer.
For example, the nighttime westward and southward winds in summer exceeded ∼100 and 200 ms− 1, respec-
tively, at 50°N, while the daytime winds were ∼30 ms− 1. This weaker daytime wind is attributed to stronger ion
drag from solar radiation and ionization. Heale, Inchin, and Snively (2022) simulated primary and secondary
GWs emitted from squall lines, showing that the phase speed ranges of primary and secondary GWs are 170–
320 ms− 1 and ∼100–600 ms− 1 in the thermosphere. According to a simulation conducted by Vadas and
Crowley (2010), phase speed spectra of secondary GWs, whose primary GWs were induced by equatorial
convection, peak in the range of ∼100–300 ms− 1. Assuming that TIDs’ phase speeds are in the range of ∼100–
300 ms− 1, the nighttime wind exceeding 100 ms− 1 potentially filtered out some parts of TIDs. During daytime,
the weaker wind speed in the thermosphere enables GWs to propagate through the thermosphere/ionosphere,
increasing (decreasing) the occurrence number of simultaneous (GW‐only) cases. On the other hand, the stronger
nighttime wind could filter out or distort concentric GWs, increasing (decreasing) the occurrence number of GW‐
only (simultaneous) cases.

The local time variation of the thermospheric wind could also induce the local time and latitudinal variations of
the simultaneous cases in fall and winter; that is, those cases were present at ≥∼42°N during daytime and
≤∼42°N during nighttime (see Figure 4a). The northward wind during the daytime (Figure 8l) suggests that
southward‐propagating GWs were dominant. Considering the dense receiver area between 30 and 50°N, GNSS‐
TEC possibly tends to capture the south sides of concentric rings with their epicenters at high latitudes. On the
other hand, the southward wind at nighttime (Figure 8i) could suppress southward‐propagating GWs, resulting in
the preference occurrence south of ∼42°N. It should be noted that the background wind drastically controls
dissipation on GWs, even if their phase speed is much higher than the background wind speed (Fritts &
Vadas, 2008; Vadas, 2007). In addition to the dissipation, GNSS‐TEC receivers can detect TIDs only with vertical
wavelengths exceeding ∼100 km, as they observe electron content integrated vertically. Alexander et al. (2011)
describes the relationship between a vertical wavelength and background wind under the midfrequency
approximation as follows:
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Figure 8. (a–c) Vertical wind profiles of the seasonal mean zonal wind at ∼1.5 LT averaged over 60–130°W at 25°, 37°, and
50°N, respectively, in SD‐WACCM‐X. (d–f) Same as (a–c), respectively, but for the meridional wind. (g–l) Same as (a–f),
but at ∼13.5 LT.
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λz(z) =
2π
N(z)

(ch − uh(z)), (2)

where λz(z), N(z), ch, and uh(z) represent the vertical wavelength, Brunt–Väisälä frequency, ground‐based phase
speed, and horizontal wind in the wave propagation direction, respectively. Considering that GNSS‐TEC re-
ceivers can observe TIDs with vertical wavelengths exceeding ∼100 km, the intrinsic phase speed, ch − uh(z),
must satisfy the following equation:

⃒
⃒
⃒ch − uh(z)

⃒
⃒
⃒≥

100 [km] × N(z)
2π

. (3)

Given that the typical Brunt–Väisälä frequency at 200–300 km altitudes is ∼1.0 × 10− 2 s− 1, the minimum
observable intrinsic speed is ∼160 ms− 1. The minimum observable ground‐based phase speeds of southward
propagating GWs during nighttime are ∼270 ms− 1 in fall and ∼230 ms− 1 in winter, while those of northward‐
propagating are ∼50 ms− 1 in fall and ∼90 ms− 1 in winter. Therefore, GNSS‐TEC receivers cover the entire
range of the typical peak ground‐based phase speed spectrum (∼100–300 ms− 1) of northward propagating GWs
and preferentially capture northward propagating GWs during nighttime. Similarly, during daytime, the minimum
observable ground‐based phase speeds of southward‐propagating GWs are ∼120 ms− 1 in both fall and winter,
whereas those of northward‐propagating GWs are ∼200 ms− 1. As a result, GNSS‐TEC receivers preferentially
capture southward propagating GWs during daytime.

7. Conclusions
We analyzed the seasonal distributions of concentric GWs in the stratosphere and concentric TIDs in the iono-
sphere in 2022 (a solar medium year) and compared them with weather conditions and background winds in the
upper atmosphere. We found that the occurrence number of concentric TIDs associated with stratospheric
concentric GWs was highest in summer. Geographical variations in the TID epicenters were consistent with the
patterns of deep convection in each season. Table 2 shows a summary of the regions of clustered epicenter and the
potential GW sources for each season. Concentric TID epicenters aligned with high CAPE regions over the
central‐to‐eastern U.S. in summer and south of ∼40°N in spring and fall. On the other hand, the epicenters in
winter and north of ∼40°N in spring and fall appeared south of the high EACpp areas, corresponding to centers of
extratropical cyclones. Our findings indicate that concentric TIDs associated with stratospheric GWs over the
continental U.S. were primarily driven by convection, although the specific weather phenomena varied by season
and latitude. These phenomena could be thunderstorms over the central U.S. in summer and the southern U.S. in
spring and fall, while those could be extratropical cyclones over the northern U.S. in winter, spring, and fall. Over
the North Atlantic during fall, a few events were most likely associated with Hurricane Nicole.

Concentric stratospheric GWs appear to be correlated with concentric TIDs in 66% of all GW events. This
suggests that more than half of the convectively‐generated GWs directly propagate into the ionosphere, driving
concentric TIDs. Convection is one of the primary lower atmospheric sources capable of producing concentric

Table 2
Summary of Regions of Clustered Epicenter and Specific Weather Phenomena Associated With Convection for Each Season

Season Region of clustered epicenter Specific weather phenomena associated with convection

Winter North of ∼40°N Extratropical cyclones

Spring South of ∼40°N Thunderstorms

North of ∼40°N Extratropical cyclones

Summer Central‐to‐eastern U.S. (∼80–100°W, 25–50°N) Thunderstorms

Fall South of ∼40°N Thunderstorms and tropical cyclone

North of ∼40°N Extratropical cyclones
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TIDs in the ionosphere and is therefore an important component of the vertical coupling due to GWs. We also
found that the thermospheric wind potentially influences the local time and latitudinal variation of the concentric
TIDs associated with stratospheric GWs. Specifically, the thermospheric wind is weaker during daytime than
during nighttime, leading to a higher occurrence rate of simultaneous cases during daytime. The higher occur-
rence rate may also be related to the increased background electron density during daytime. Our results suggest
that weather information is highly valuable for understanding atmospheric vertical coupling and predicting TID
occurrences.

We focused on the concentric GWs and TIDs in 2022, a moderate solar flux year (F10.7= 100–150 sfu). Since the
kinetic viscosity at a fixed height increases as the thermospheric temperature decreases (due to a concomitant
decrease in density), the dissipation of GWs increases with decreasing solar activity (Hickey & Cole, 1981;
Otsuka et al., 2021; Vadas, 2007). As a result, the occurrence of concentric TIDs associated with stratospheric
GWs may decrease during periods of low solar activity. Conversely, during high solar activity, the opposite trend
might occur. On the other hand, a year‐to‐year variation of GW activity due to convection and background wind
should be taken into account since concentric GWs are the driving forces of concentric TIDs. GNSS‐TEC data
over the continental U.S. and AIRS observations have been available for more than 20 years, allowing us to
confirm the effect of solar activity on the occurrence of concentric TIDs in a future study.

This study is the first to statistically examine the correlation between concentric GWs in the stratosphere and
concentric TIDs in the ionosphere over the course of a year. Although this paper focuses on simultaneous
events, concentric TIDs without concentric GWs in the stratosphere are frequently observed in GNSS‐TEC data
as well. It is critically important to identify their sources to comprehend the atmospheric vertical coupling.
Concentric TIDs without stratospheric GWs may be linked to the secondary GW generation mechanism,
possibly related to plain‐front GWs in the stratosphere/mesosphere. In addition, the source of their parent
waves might be linked to weather phenomena (e.g., jets and flow over mountains). Using a combination of
instruments sensitive to different atmospheric layers, as done in this study and previous studies (e.g., de Groot‐
Hedlin et al., 2017; Kogure, Liu, & Jin, 2023; Kogure, Nakamura, et al., 2023; Kogure et al., 2020; Yue
et al., 2013, 2014), could help identify sources of concentric TIDs without concentric GWs in the stratosphere.
Our methodology can be applied in low/high latitudes if those regions are widely and densely covered by GPS
receivers, similar to the U.S. Since weather phenomena are different between low, middle, and high latitudes,
the primary sources of concentric TIDs with concentric GWs in the stratosphere might be different in low/high
latitudes from the middle latitudes (the continental U.S.). Also, weather patterns and thermal tides are influ-
enced by large‐scale climate phenomena which have interannual variations (e.g., El Niño–Southern Oscillation;
Kogure & Liu, 2021; Kogure, Liu, & Jin, 2023; Kogure, Nakamura, et al., 2023; Liu et al., 2017). Those large‐
scale climate phenomena might influence TID activity, potentially providing insights into the long‐term trends
of TID activity.

Data Availability Statement
The AIRS gravity wave data sets (Hoffmann, 2021; Hoffmann et al., 2013, 2014, 2017) are provided by For-
schungszentrum Jülich (https://datapub.fz‐juelich.de/slcs/airs/gravity_waves/data).The AIM gravity wave data
set is described by Randall et al. (2017), and is available from the University of Colorado at http://lasp.colorado.
edu/aim/download‐data‐raa.php, as well as the NASA Space Physics Data Facility (SPDF) at https://spdf.gsfc.
nasa.gov/pub/data/aim/cips/data/RAA/. The Kp index data sets (Matzka et al., 2021) are provided by Helmholtz‐
Zentrum Potsdam Deutsches GeoForschungsZentrum (https://kp.gfz‐potsdam.de/en/data). The Receiver Inde-
pendent Exchange Format (RINEX) data used for GNSS‐TEC processing were provided by 50 data providers.
These have been listed on the webpage of the GNSS‐TEC database (http://stdb2.isee.nagoya‐u.ac.jp/GPS/GPS‐
TEC/gnss_provider_list.html). The main contributed providers to the data in this study are UNAVCO, CDDIS,
CHAIN, PNGA, SOPAC, RENAG, SONEL, LINZ, TLALOCNET, and NCEDC. The detrended TEC data sets
used in this study (Kogure & Otsuka, 2025a, 2025b, 2025c, 2025d, 2025e, 2025f) can be accessed through the
following links. January and February: https://doi.org/10.5281/zenodo.14625201. March and April: https://
zenodo.org/records/14625725. May and June: https://zenodo.org/records/14625733. July and August: https://
zenodo.org/records/14625750. September and October: https://zenodo.org/records/14625756. November and
December: https://zenodo.org/records/14625777.
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